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Abstract—Road Lane detection plays a vital role in the 

Advanced Driver assistive systems and it improves the vehicle's 

safe driving. However, Road lane detection is a complex 

problem because of the varying road conditions that one can 

encounter while driving. In this project, a vision based lane 

detection approach capable of reaching realtime operation with 

robustness to lighting change and shadows is presented. The 

lane boundaries, lane direction and its radius of curvatures 

were detected from a stream of videos. The video is recorded 

from a camera mounted on the top of a vehicle. We have 

corrected the camera distortion in the input frame. HLS 

thresholding and Canny edge thresholding techniques are 

carried out to the undistorted image for getting focus on the 

lane lines in the binary image. Then the resulted frame is 

warped into the bird’s eye by applying the perspective 

transformation technique. The respective lane line pixels are 

identified using sliding window approach and then left and 

right lane lines are identified by fitting second-degree 

polynomials. The lane curvature and deviation from the lane 

centre are also computed after the identification of the lane. 

The identified lane boundaries are warped back onto the input 

image and the radius of lane curvature and vehicle position is 

calculated and displayed with appropriate comments. Hence 

this technique is enforced using python programming language 

and for processing the images Open CV is used. 

Keywords—Advanced Driver assistive systems, HLS 

thresholding, Canny edge thresholding, binary image, 

perspective transformation, sliding window, second-degree 

polynomial, python programming, Open CV. 

I. INTRODUCTION 

With the rapid development of society, automobiles have 

become one of the transportation tools for people to travel. As 

more and more vehicles are driving on the road, the number of 

car accidents is increasing every year. Advanced driver 

assistance systems which include lane departure warning 

(LDW), Lane Keeping Assist, and Adaptive Cruise Control 

(ACC) can help people analyse the current driving environment 

and provide appropriate feedback for safe driving or alert the 

driver in dangerous circumstances. 

Lane detection has been applied in an intelligent vehicle 

system to reduce the chances of road accidents. Identifying 

lanes on the road is a common task performed by all human 

drivers to ensure their vehicles are within lane lines when 

driving, so as to make sure traffic is smooth and minimise 

chances of collisions with other cars in nearby lanes. Similarly, 

it is a critical task for an autonomous vehicle to perform. It 

turns out that recognizing lane lines on roads is possible using well 

known computer vision techniques. 

II. LITERATUREREVIEW 

A. HuiKong,Jean-YvesAudibert,JeanPonce,2009 [1] 

This paper addresses decomposing the road detection 

process into two steps: the estimation of the vanishing point 

associated with the main (straight) part of the road, followed by 

the segmentation of the corresponding road area based on the 

detected vanishing point. 

B. S.SaiTej,M.Sravani,Ch.AjaySumanth,M.RamNitin2009[2] 

This model is based on image processing and road 

detection in self-driving vehicles. In this process of finding the 

road in the image captured by the vehicle, we can use some 

algorithms for vanishing point detection using Hough transform 

space, finding the region of interest, edge detection using canny 

edge detection algorithm and then road detection. 

III. SYSTEMARCHITECTURE 
 

IV. MODULES 

Working of computer vision algorithm can be 

architecture as a single model or pipeline of models. Since this 

process takes a series of related steps, pipeline of models can be 

considered by passing specified input each model as 

corresponding previous model output. 

Pipeline of Models: The road detection pipeline follows these 

models: 

i) Computationofcameracalibrationmatrixanddistortioncoeffici

entsfromaset of chessboard images. 

ii) Applying distortion correction on raw images. 
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iii) Production of a bird’s eye view image via perspective 

transform. 

iv) Histogram of bird’s eye view image. 
 

v) Using sliding windows to find lane line pixels. 
 

vi) Fitting of second degree polynomials to identify left and 

right lines composing the lane. 

vii) Computation of lane curvature and deviation from lane 

centre. 

viii) Warping and drawing of lane boundaries on image as 

well as lane curvature information. 

Model1: Computation of camera calibration matrix and 

distortion coefficients from asset of chessboard images 

To compute the camera calibration matrix and distortion 

coefficients, we use multiple pictures of a chessboard on a flats 

face taken by the same camera. The distortion matrix was used 

to un-distort a calibration image and provides a demonstration 

that the calibration is correct. Open CV has a convenient 

method called find Chessboard Corners that will identify the 

points where black and white squares intersect and reverse 

engineer the distortion matrix this way. 

The cv2 find Chessboard Corners function to store the 

object points (3D points in real world space) and image points 

(2D points in image plane) of the grid corners. These object 

points and image points are used in cv2. Calibrate Camera () to 

return the calibration matrix, distortion coefficients, rotation and 

translation vectors. Next we run our chessboard finding 

algorithm over multiple chessboard images taken from different 

angles to identify image and object points to calibrate the 

camera. 

 

 
Model2: Applying distortion correction on raw images 

 
The calibration data for the camera that was collected in 

model1 can be applied for raw images to apply distortion 

correction. It may be harder to see the effects of applying 

distortion correction on raw images compared to a chessboard 

image. 
 

Before Un-distorting raw image 

 

 

 

After Distortion Correction 
 

Model3: Application of color and gradient thresholds to focus 

on lane lines 

 
We apply color and edge thresholding in this section to 

better detect the lines, and make it easier to find the polynomial 

that best describes our left and right lanes later. 

 
A. Color Thresholding 

 
There are actually many ways to achieve this result, but 

we choose to use HLS where S channel may provide with great 

results depending on the lighting situation. 

 

 
B. Edge thresholding 

 
This section mainly performs the overall edge detection 

on the frame image, using the improved canny edge detection 

algorithm. The concrete steps of canny operator edge detection 

area follows: 

 
i) First, we use a Gaussian filter to smooth the image (pre 

processed image). Gaussian smoothing is used to reduce the 

noise from image. We use this pre-processing step to remove 

many detected edges and only keep the most prominent edges 

from the image. 

 

 
ii) Then we use the Sobel operator to identify gradients, that is 

change in color intensity in the image. Higher values would 

denote strong gradients, and therefore sharp changes in color. 

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#cv2.findChessboardCorners
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We naturally combine both color and Sobel thresholded 

binary images. 

 
Model4: Production of a bird’s eye view image via perspective 

transform 

 
Images have perspective which causes lanes lines in an 

image to appear like they are converging at a distance even 

though they are parallel to each other. To make them to view as 

a parallel line by transforming the image to a 2D Bird’s eye 

view where the lane lines a realways parallel to each other. 

 
To perform the perspective transform, we identified 4 

source points that form a trapezoid on the image and 4 

destination points such that lane lines are parallel to each other 

after the transformation. The destination points were chosen by 

trial and error but once chosen works well for all images and 

the video since the camera is mounted in a fixed position. 

 
The perspective transform, then application of color and 

gradient thresholding enable us to clearly identify the position 

of the lanes on the bird's eye view image. 

The perspective transform produces the following type 

of images: 

 

 
Bird’s eye view on curved lanes 

 

Model5:Histogram of bird’s eye view image 
 

The maximum probability region can be determined 

by observing the histogram of the bird’s-eye view, which  

 

 

 

 

produces two distinct peaks, one for the left lane and the 

other for the right. 

 

Once the input image is preprocessed, the next step is to locate 

and map the lane lanes in the image space. The approach would 

be to plot a histogram of pixels that are non-zero in the lower 

half of the binary image to observe the pattern. We then compute 

a histogram of our binary thresholded images in the y direction, 

on the bottom half of the image, to identify the x positions where 

the pixel intensities are highest. 

 

 

 
 

 

 
Model6: Using sliding windows to find lane line pixels 

 

As the pixel values are now binary, the peaks can 

represent where most of the non-zero pixels are located and thus 

area good indicator of the lane lines. Thus, the x-coordinates 

from the histogram serve as a starting point to search for the 

respective lanes. The concept of sliding windows approach will 

be applied here, which is essentially a window with a margin 

being placed around the line’s centre. 

 

 
Model7: Fitting of second degree polynomials to identify left 

and right lines composing the lane 

From then, we simply compute a second degree 

polynomial, via num py’s poly fit, to find the coefficients of the 

curves that best fit the left and right lane lines which mean the 

window template is slid across the image from left to right and 

any overlapping values are summed together, creating the 

convolved signal. The peak of the convolved signal is where 

the highest overlap of pixels are and it is the most likely 

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.polyfit.html
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position for the lane marker. Methods have been used to 

identify lane line pixels in the rectified binary image. The 

left and right lines have been identified and fit with a 

curved polynomial function. 
 

 

 

Model 8: Computation of lane curvature and deviation 

from lane centre 

The next step is to compute the radius of curvature 

which can be calculated with a circle that closely fits 

nearby points on a local section of a curve. The radius of 

curvature of the curve at a particular  point can be defined 

as the radius of the approximating circle. 
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We took the measurements of where the lane lines are 

and estimated how much the road is curving, along with the 

vehicle position with respect to the centre of the lane. We 

assumed that the camera is mounted at the centre of the car. 

We also compute the car’s distance from the centre of the 

lane by offsetting the average of the starting (i.e.bottom) 

coordinates for the left and right lines of the lane, subtract the 

middle point as an offset and multiply by the lane’s pixel to real 

world width ratio. 

Model 9: Warping and drawing of lane boundaries on image as 

well as lane curvature information 

Finally, we draw the inside of the   lane   in   green and 

unwarp the image, thus moving from bird’s eye view to the 

original undistorted image. The fit from the rectified image has 

been warped back onto the original image and plotted to 

identify the lane boundaries. 

V. OUTPUTSCREENSHOTS 
 

The output will be as follows if there is a left curve ahead and 

the lane area is colored with green. As the vehicle is within the 

lane line so the output screen is displayed with Good Lane 

Keeping. The vehicle is deviated 0.07m away from center and 

the curvature range is 3948m. 
 

TheoutputwillbeasfollowsifthereisaRightcurveahead.Thevehicle 

is deviated 0.15m away from center and the 

curvaturerangeis2425m. 
 

 
Theoutputwillbeasfollowsifthereexistsnocurves.Thevehicleis 

deviated 0.07m away from center. As the road is straight, 

nocurvaturerangeisdisplayedintheoutputscreen. 

VI. CONCLUSION 
 

 

 

When we drive, we use our vision to decide where to go. 

The lines on the road detected by the model that show us where 

the lanes are act as our constant reference for where to steer the 

vehicle. This steering is also done automatically. Naturally, one 

of the first things we would like to do in developing a self-

driving vehicle is to automatically detect lane lines using 

analgorithm.Thusinourprojectweproposedaroadlanedetectionby

performingcameracalibration,colorandgradientthresholding,pers

pectivetransformationandslidingwindowstodetectlanelines.Weu

sedrealtimevideosasaninputinsteadofimages also we used 

second degree polynomial and histogram based approach to 

detect curved roads. And it works well in all lighting 

conditions. 
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